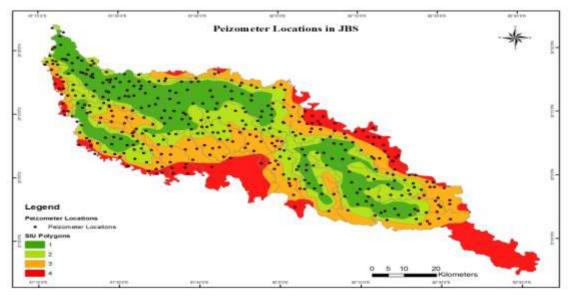
GIS Automation in Ground Water Analysis

S. K. Singh, S.K. Tripathi and R.K. Prajapati*

Department of Energy and Environment, MGCG University, Chitrakoot- 485334, Satna (M.P.) India *Corresponding Author email: Prajapati.rajesh8@gmail.com, Mob. +91-9755039331

Prologue

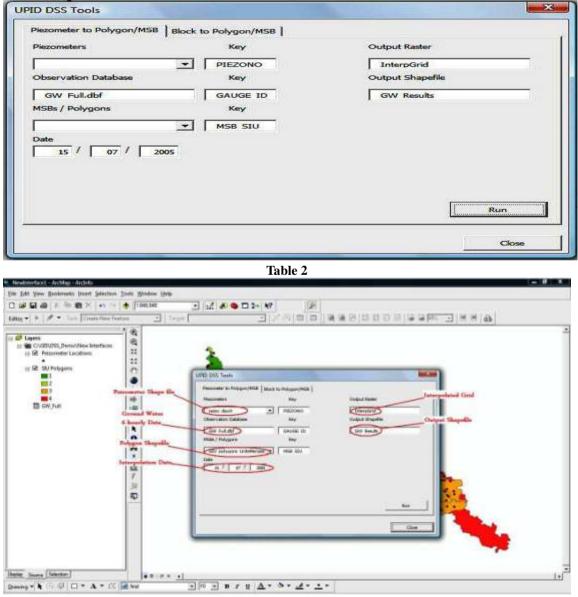

Evaluation of maps generated from different conceptual models or data processing approaches at spatial and temporal level has its foremost importance in many geo environmental applications. GIS technology in such studies is proved to be the powerful tool especially in water utility applications, engineering, constructions and operational purposes. The technique provides advanced automation into number of applications that use to be time consuming and tedious before. The attempt is an approach to give glimpse of automation techniques used in ground water analysis in JBS pilot area.

Jaunpur Branch Sub Basin, Ground Water Levels and Sub Irrigation Units

Jaunpur Canal is a branch canal of the Sarda Sahayak Feeder Canal System of about 650 cumec capacity, offtaking from the Sarda River and fed by Sarda Link Channel of 480 cumec capacity from the Ghaghra River. The 123-cumecs Jaunpur Branch canal irrigates about 3 lakh ha between the Gomti and the Sai Rivers. Nevertheless, the gross command area, which can be irrigated from the Jaunpur offtake, is about 542000 ha of the Gomti-Sai doab. The region of study is Jaunpur Branch Sub Basin, pilot area of the Ghaghra Gomti Basin that comes under Uttar Pradesh Water Sector Restructuring Project (UPWSRP). Under the same (UPWSRP) program, the UP Irrigation Department recently installed more than 475 piezometers with Automatic Digital Water Level Recorders (ADWLR) to monitor groundwater levels in JBS. Six hourly groundwater level data of pre monsoon and post-monsoon 2005 onwards as obtained from piezometer is required to be summarized as per one hundred forty six Sub Irrigation Units.

Methodology

The tool developed for ground water depth analysis is compatible in ARCGIS environment. The interface interpolates the data using inverse distance weighted algorithm and produces the output in table as well as raster formats. The tool requires three input files first the peizometer data point file, second the polygon file that is Sub Irrigation Units (it may be any other polygon layer of the same area, such as block or MSB layer), according to which the statistics have to be calculated, and the ground water depth table in *.dbf format, which has the six hourly data corresponding to every peizometer in the point shape file (Fig.1 & Table 1)



GIS Automation in Ground Water Analysis

OID	YEAR	MONTH	DAY	HOUR	GAUGE_ID	DEPTH
298046	2005	12	26	6	17131	3.771
298188	2005	12	27	12	17131	3.785
298330	2005	12	27	18	17131	3.795
298472	2005	12	27	0	17131	3.785
298614	2005	12	27	6	17131	3.788
298756	2005	12	28	12	17131	3.845
298898	2005	12	28	18	17131	3.825
I na nao	2005	12	70	0	47494	2 0 1 1

Table1

Interface of the program is user friendly, user has to mention the three files required in the input and click the Run button to execute the program (Figure 2 & Table 2).

www.ijres.org

There are two outputs generated by the program, one is the interpolated grid, and the other is the polygon wise statistics (Figure 3 & Table 3).

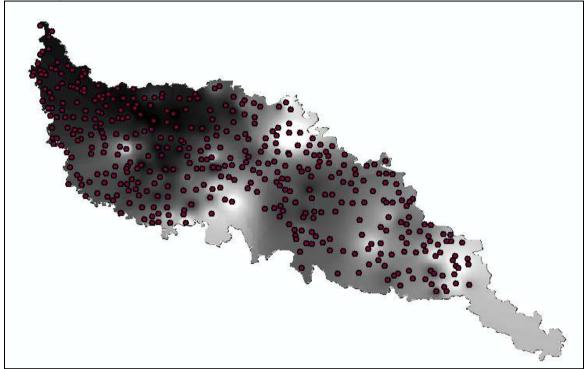


Figure 3

L	GW AREA	GW MIN	GW MAX	GW RANGE	GW_MEAN	GW_STD	GW_SUM	
T	14142600	2.41634	2.82382	0.408483	2.72768	0.103816	629.16002	- î
Г	23109300	2 75778	2.85111	0.093333	2.80663	0.022646	889.70099	
ſ	16985700	2.81729	3.51418	0.696888	2.93935	0.161343	684.86902	
Г	17787600	2.87253	3.33278	0.460248	3.05007	0.178449	744.21698	
ľ	27118800	2.82496	3.79201	0.967048	3.16618	0.272083	1177.8199	
Ľ	4446900	3.57754	3.76198	0.184444	3.66898	0.048007	223.808	
Ľ	20557800	2.88718	3.68078	0.793608	3.36432	0.179878	948.737	
Г	9695700	3.23366	3.70918	0.476632	3.6291	0.14323	469.371	1
Γ	2332800	3.67908	3.79289	0.113803	3.72794	0.03015	119.294	
Γ	4301100	3.60367	3.81284	0.209176	3.70793	0.051636	218 76801	
Г	6633900	3 67311	4.13622	0.463114	3.83591	0.119608	349.06799	
Γ	9258300	3.72494	4.12006	0.39512	3.91608	0.133371	497 34299	
	9768600	3.71107	4.18997	0.478902	3.89646	0.113994	522.12598	
E	13996800	3.66497	4.19893	0.53396	3.9002	0.119992	748.83801	
Ľ	3280500	3.86071	4.16871	0.317998	4.07315	0.098963	183.29201	
	4301100	4.15849	4.39024	0.231749	4.26346	0.062065	251.54401	
	22890600	3.93124	4.96314	1.0319	4.33393	0.203076	1360.85	
	63277200	4.11434	9.1153	5.00096	5.86348	0.950622	5089.5	
	16183800	4.14428	5.18491	1.04063	4.49982	0.261877	998.961	
Ľ	12320100	4.12408	5.24714	1 12306	4.80099	0.328878	811 367	
Ľ	8164800	4.77593	5.48508	0.709153	5.06097	0.199406	566.828	
Ľ	16621200	4.73664	6.64189	0.806349	6.22916	0.246269	1192.26	
	8748000	5.05104	5.60744	0.656393	5.33768	0.156965	640.621	
	11736900	5,28105	6.34891	1.06786	5.81473	0.269274	936.172	
	13122000	4.71784	5.39244	0.674605	5.20165	0.199178	936 29797	
L	10206000	4.68147	5.33419	0.652718	5.01446	0.241492	702.02399	
L	8893800	4.9029	5.31499	0.412091	5.25145	0.083526	640.677	
L	11226600	4.88884	5.2794	0.390652	5.20884	0.085152	802 16101	
	1676700	5.21111	5.37858	0.167469	6.30229	0.061445	121.963	
	2843100	4.92976	6.32961	0.399758	6.12712	0.144696	199.96799	
L	9185400	4.90502	5.29692	0.391896	5.07093	0.107852	638.93701	
	6488100	4.90159	5.27071	0.369114	5 10404	0.093784	454.259	
L	8820900	4.94149	5.42517	0.48368	5.22395	0.154435	632.09698	
	nnn4000	e a sensa			6 3353	0.035303	11 430 0030X	

Table 3

Comparing the results and utility of this program, with the data for the three dates 2nd July, 2nd August and 2nd September, results are extracted presented in Figure 4, 5 & 6. It gives the idea of clear cut changing trend of different ground water levels over three respective months.

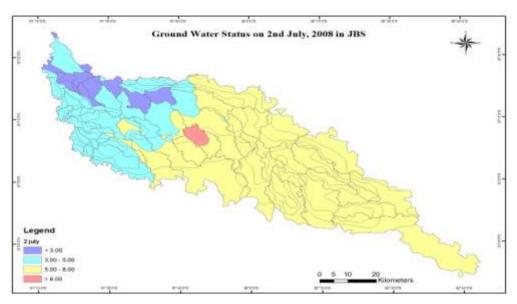


Figure 4

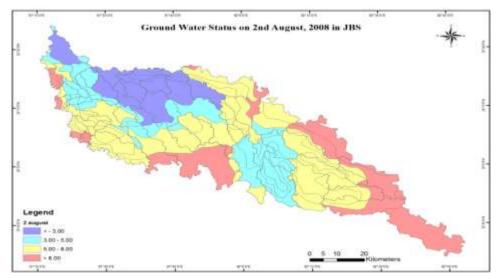
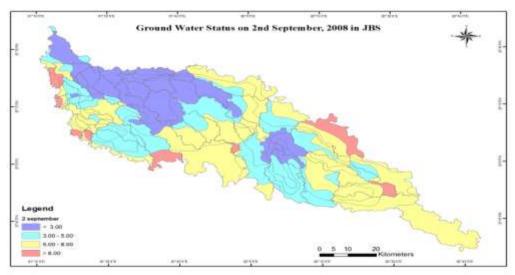



Figure 5

The outputs can be seen on excel sheets in form of table and charts as well. An example of one SIU Polygon of a Deeh distributary is plotted and demonstrated in Figure 7.

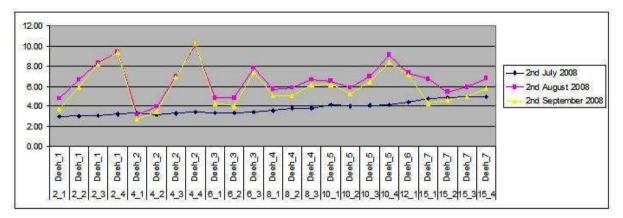


Figure 7

Utilities

- [1]. The tool combines data with application behavior modeling
- [2]. It analyses the output based on various statistical parameters such as central tendency and deviations
- [3]. It gives a spontaneous data projection from one scale to another
- [4]. It helps to understand trend of changes in ground water levels over temporal scale
- [5]. User can extract information as desired whether in map or raster format or table format